Chapitre 15
Annexes

15.1 Annexe 1. Inventaire des données collectées

Les sources des données sont :

1. Avril, 1995
2. Legeleux et al., 1996
3. Tachikawa et al., 1997
4. Khripounoff et al., 1998
5. Bory, 1997; Bory et Newton, 2000
6. Bory, 1997; Bory et al., 2001
7. Jeandel et al., 2000
8. H. Etcheber, communication personnelle, 1997

Aucune source n’est indiquée pour le flux de masse, mais les mesures sont publiées dans les références 2 à 7.
Tableau 26. Inventaire des données rassemblées au site EUMELI oligotrophe

<table>
<thead>
<tr>
<th>Composant</th>
<th>Pièges</th>
<th>Pompes in situ</th>
<th>Bouteilles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 m</td>
<td>2500 m</td>
<td>4400 m</td>
</tr>
<tr>
<td>Al</td>
<td>x(3,6)</td>
<td>x(3,6)</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>x(7)</td>
<td>x(7)</td>
<td></td>
</tr>
<tr>
<td>CaCO₃</td>
<td>x(3)</td>
<td>x(2,4,5)</td>
<td>x(2,6)</td>
</tr>
<tr>
<td>Ce</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>x(8)</td>
<td>x(2,4,8)</td>
<td>x(3)</td>
</tr>
<tr>
<td>Co</td>
<td>x(3)</td>
<td>x(5)</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>x(3)</td>
<td>x(2,3)</td>
<td>x(3)</td>
</tr>
<tr>
<td>Flux de masse</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Gd</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>x(3)</td>
<td>x(2,3)</td>
<td>x(2,3)</td>
</tr>
<tr>
<td>Sm</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>x(3)</td>
<td>x(2,3)</td>
<td>x(3)</td>
</tr>
<tr>
<td>Tm</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>x(3)</td>
<td>x(3)</td>
<td></td>
</tr>
</tbody>
</table>

[Note: The table contains chemical elements and their occurrences in different samples.]
<table>
<thead>
<tr>
<th>Composant</th>
<th>Pièges</th>
<th>Pompes in situ</th>
<th>Bouteilles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 m</td>
<td>2500 m</td>
<td>3000</td>
</tr>
<tr>
<td>Al</td>
<td>$x^{1.6}$</td>
<td>$x^{1.6}$</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>$x^{1.7}$</td>
<td>$x^{1.7}$</td>
<td></td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
</tr>
<tr>
<td>Ce</td>
<td>$x^{3.0}$</td>
<td>$x^{3.0}$</td>
<td></td>
</tr>
<tr>
<td>Carbone Organique</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
</tr>
<tr>
<td>Carbone Total</td>
<td>$x^{3.8}$</td>
<td>$x^{3.8}$</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Er</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Eu</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
</tr>
<tr>
<td>Flux de masse</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Gd</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Ho</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>La</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Lu</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Mn</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Ni</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Opale</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Pr</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
</tr>
<tr>
<td>Si</td>
<td>$x^{3.7}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Sr</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
</tr>
<tr>
<td>Ti</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
<td>$x^{2.3}$</td>
</tr>
<tr>
<td>Tm</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>$x^{3.7}$</td>
<td>$x^{3.7}$</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 27. Inventaire des données rassemblées au site EUMELI mésotrophe
Tableau 28. Inventaire des données collectées au site EUMELI eutrophe

<table>
<thead>
<tr>
<th>Composant</th>
<th>Pompes in situ</th>
<th>Bouteilles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Carbone</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Organique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Er</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Gd</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Ho</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>La</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Lu</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mn</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pr</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Sm</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Tb</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Th</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Yb</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
15.3 **Annexe 3. Modifications apportées ultérieurement au modèle semi-spectral PSyDyn**

Suite à l’article que j’ai rédigé (Athias et al., 1998 ; Annexe 2), j’ai apporté deux types de modifications au modèle PSyDyn :

15.3.1 **Prise en compte des conditions aux limites**

Dans la version de PSyDyn présentée dans Athias et al. (1998), les profils des variables d’état (Fr, Fe, Cpe et Cdé) sont reconstitués à chaque pas de temps. Ils sont modifiés de façon à prendre en compte le matériau supplémentaire qui traverse la limite supérieure de la colonne d’eau, et qui se propage sur la hauteur Vg.dt ou Vp.dt, selon qu’il s’agit de la pénétration de particules piégées ou filtrées. Les profils obtenus sont ensuite redécomposés pour poursuivre l’intégration des équations.

Dans la nouvelle version du modèle, les perturbations induites par l’apport de matériau à la limite supérieure de la colonne d’eau sont préalablement décomposées sur les fonctions de base indiquées dans la section 4.2 de l’article. C’est sous cette forme qu’elles sont utilisées pour corriger les profils issus de l’intégration des équations à chaque pas de temps. Cela permet d’éviter de reconstituer puis de décomposer les profils à tous les pas de temps, et induit un gain de temps considérable. Nous avons également constaté que cela favorisait la stabilité du modèle.

15.3.2 **Résolution analytique de la non-linéarité**

Dans la version présentée dans Athias et al. (1998), les termes non-linéaires de la forme \(X_{f}(z, t_{0}) \cdot X_{m}(z, t_{0}) \) à la date \(t_{0} \) sont décomposés sur les fonctions de base après que l’on ait calculé le profil correspondant à ce produit (cf. section 4.2 de l’article).

Dans la nouvelle version de PSyDyn, on a calculé analytiquement la décomposition du produit à partir du logiciel Maple V, et à partir de la forme décomposée de chaque variable \(X_{f}(z, t) \) et \(X_{m}(z, t) \). Les termes non-linéaires du modèle COLDO sont basés sur le produit de \(Fm(z, t) \) et \(Cpe(z, t) \), qui se décomposent selon :

\[
Fm(z, t) = a_{1}(t)(z - hcol/2) + b_{1}(t) + \sum_{n=1}^{n=nm} u_{1}^{n}(t).\cos(w_{n}, z) + \sum_{n=1}^{n=nm} v_{1}^{n}(t).\sin(w_{n}, z)
\]

\[
Cpe(z, t) = a_{2}(t)(z - hcol/2) + b_{3}(t) + \sum_{n=1}^{n=nm} u_{2}^{n}(t).\cos(w_{n}, z) + \sum_{n=1}^{n=nm} v_{2}^{n}(t).\sin(w_{n}, z)
\]

Le produit de ces deux décompositions donne :
\[Fm(z,t) \cdot Cpe(z,t) = a_1(t) \cdot a_2(t)(z - hcol/2)^2 + (a_1(t) \cdot b_3(t) + a_3(t) \cdot b_1(t))(z - hcol/2) + b_1(t) \cdot b_3(t) + a_1(t)(z - hcol/2) \left[\sum_{n=1}^{\text{mod}} u_n^3(t) \cdot \cos(w_n z) + \sum_{n=1}^{\text{mod}} v_n^3(t) \cdot \sin(w_n z) \right] + a_2(t)(z - hcol/2) \left[\sum_{n=1}^{\text{mod}} u_n^1(t) \cdot \cos(w_n z) + \sum_{n=1}^{\text{mod}} v_n^1(t) \cdot \sin(w_n z) \right] + b_1(t) \left[\sum_{n=1}^{\text{mod}} u_n^3(t) \cdot \cos(w_n z) + \sum_{n=1}^{\text{mod}} v_n^3(t) \cdot \sin(w_n z) \right] + b_3(t) \left[\sum_{n=1}^{\text{mod}} u_n^1(t) \cdot \cos(w_n z) + \sum_{n=1}^{\text{mod}} v_n^1(t) \cdot \sin(w_n z) \right] + C(t) + \sum_{\text{mod}} n=1 u_{n}^5(t) \cdot \cos(w_n z) + \sum_{\text{mod}} n=1 v_{n}^5(t) \cdot \sin(w_n z) \]

où \(C(t) + \sum_{k=1}^{\text{mod}} u_{n}^5(t) \cdot \cos(w_n z) \cdot \sin(w_n z) \) correspond au produit de convolution des résidus des variables, tronqué à \(\text{mod}=8 \). Les variables dépendantes du produit sont obtenues par projection sur les fonctions de base :

- \(\text{d}L_n^{\text{d}0} Fm(z,t) \cdot Cpe(z,t) \cdot \cos(w_n z) \cdot \sin(z) = \mu_1 \cdot \text{d}L_n^{\text{d}0} \)
- \(\text{d}L_n^{\text{d}0} Fm(z,t) \cdot Cpe(z,t) \cdot \sin(w_n z) \cdot \sin(z) = \rho_1 \cdot \text{d}L_n^{\text{d}0} \)
- \(\text{d}L_n^{\text{d}0} Fm(z,t) \cdot Cpe(z,t) \cdot \sin(w_n z) \cdot \sin(z) = \epsilon_1 \cdot \text{d}L_n^{\text{d}0} \)

soit :

\[
\text{d}L_n^{\text{d}0} = \frac{a_1 \cdot a_3}{(w_n)^2} - \frac{u_n^3 \cdot a_1 + v_n^3 \cdot a_3}{2 \cdot w_n} - 2 \sum_{m=1, m \neq n}^{\text{mod}} \left[\frac{w_n (v_m^m \cdot a_1 + u_m^m \cdot a_3)}{(w_m)^2} - (w_n)^2 \right] + b_1 \cdot u_n^3 + b_3 \cdot u_n^1 + u_n^5
\]

\[
\text{d}L_n^{\text{d}1} = \frac{a_1 \cdot a_3 \cdot hcol^2}{w_n} - \frac{u_n^3 \cdot a_1 + v_n^3 \cdot a_3}{2 \cdot w_n} - 2 \sum_{m=1, m \neq n}^{\text{mod}} \left[\frac{w_n (u_m^m \cdot a_1 + u_m^m \cdot a_3)}{(w_m)^2} - (w_n)^2 \right] + b_1 \cdot v_n^3 + b_3 \cdot v_n^1 + v_n^5
\]

\[
\text{d}L_n^{\text{d}2} = \frac{a_1 \cdot a_3 \cdot hcol}{12} \left[a_1 \cdot a_3 \cdot hcol^2 + 2(a_1 \cdot b_3 + a_3 \cdot b_1) \cdot hcol + 12 \cdot b_1 \cdot b_3 \right] + \frac{4}{a_1} \sum_{m=1}^{\text{mod}} \left(\frac{u_m^m}{w_m} \right)^2 + a_3 \sum_{m=1}^{\text{mod}} \left(\frac{u_m^m}{w_m} \right)^2 \] - (3 \cdot a_1 \cdot hcol + 2 \cdot b_1) \sum_{m=1}^{\text{mod}} \left(\frac{v_m^m}{w_m} \right) - (3 \cdot a_3 \cdot hcol + 2 \cdot b_3) \sum_{m=1}^{\text{mod}} \left(\frac{v_m^m}{w_m} \right) + C \cdot hcol - 2 \sum_{m=1}^{\text{mod}} \left(\frac{v_m^m}{w_m} \right)
\]

\[
\text{d}L_n^{\text{d}3} = \frac{a_1 \cdot a_3}{6} \cdot hcol^2 + 2 \cdot b_1 \cdot b_3 - 2 \frac{1}{a_1} \sum_{m=1}^{\text{mod}} \left(\frac{v_m^m}{w_m} \right) + a_3 \sum_{m=1}^{\text{mod}} \left(\frac{v_m^m}{w_m} \right) + 2 \cdot C
\]
Pour les termes issus de la décomposition du produit de la convolution, le calcul donne :

\[
C = \frac{1}{2} \sum_{m-n \text{mod}} (u_n^m v_n^m + v_n^m u_n^m)
\]

\[
2a_1 = u_1^0 a_0^0 + u_2^0 a_0^1 + u_3^0 a_0^2 + u_4^0 a_0^3 + u_5^0 a_0^4 + u_6^0 a_0^5 + u_7^0 a_0^6 + u_8^0 a_0^7
\]

\[
2a_2 = u_1^1 a_0^1 + u_2^1 a_0^2 + u_3^1 a_0^3 + u_4^1 a_0^4 + u_5^1 a_0^5 + u_6^1 a_0^6 + u_7^1 a_0^7 + u_8^1 a_0^8
\]

\[
2a_3 = u_1^2 a_0^2 + u_2^2 a_0^3 + u_3^2 a_0^4 + u_4^2 a_0^5 + u_5^2 a_0^6 + u_6^2 a_0^7 + u_7^2 a_0^8 + u_8^2 a_0^9
\]

\[
2a_4 = u_1^3 a_0^3 + u_2^3 a_0^4 + u_3^3 a_0^5 + u_4^3 a_0^6 + u_5^3 a_0^7 + u_6^3 a_0^8 + u_7^3 a_0^9 + u_8^3 a_0^{10}
\]

\[
2a_5 = u_1^4 a_0^4 + u_2^4 a_0^5 + u_3^4 a_0^6 + u_4^4 a_0^7 + u_5^4 a_0^8 + u_6^4 a_0^9 + u_7^4 a_0^{10} + u_8^4 a_0^{11}
\]

\[
2a_6 = u_1^5 a_0^5 + u_2^5 a_0^6 + u_3^5 a_0^7 + u_4^5 a_0^8 + u_5^5 a_0^9 + u_6^5 a_0^{10} + u_7^5 a_0^{11} + u_8^5 a_0^{12}
\]

\[
2a_7 = u_1^6 a_0^6 + u_2^6 a_0^7 + u_3^6 a_0^8 + u_4^6 a_0^9 + u_5^6 a_0^{10} + u_6^6 a_0^{11} + u_7^6 a_0^{12} + u_8^6 a_0^{13}
\]

\[
2a_8 = u_1^7 a_0^7 + u_2^7 a_0^8 + u_3^7 a_0^9 + u_4^7 a_0^{10} + u_5^7 a_0^{11} + u_6^7 a_0^{12} + u_7^7 a_0^{13} + u_8^7 a_0^{14}
\]

\[
2a_9 = u_1^8 a_0^8 + u_2^8 a_0^9 + u_3^8 a_0^{10} + u_4^8 a_0^{11} + u_5^8 a_0^{12} + u_6^8 a_0^{13} + u_7^8 a_0^{14} + u_8^8 a_0^{15}
\]

\[
2a_{10} = u_1^9 a_0^9 + u_2^9 a_0^{10} + u_3^9 a_0^{11} + u_4^9 a_0^{12} + u_5^9 a_0^{13} + u_6^9 a_0^{14} + u_7^9 a_0^{15} + u_8^9 a_0^{16}
\]

\[
2a_{11} = u_1^{10} a_0^{10} + u_2^{10} a_0^{11} + u_3^{10} a_0^{12} + u_4^{10} a_0^{13} + u_5^{10} a_0^{14} + u_6^{10} a_0^{15} + u_7^{10} a_0^{16} + u_8^{10} a_0^{17}
\]
15.3.3 Nouvelles EDO associées à PSyDyn

A partir de ces modifications, les nouvelles équations sont les suivantes :

\[I = \left(\frac{h \text{col}^2}{12} \right) - 2 \cdot \sum_{m=1}^{m=\text{mod}} \left(\frac{1}{w_m} \right)^2 \]

- **EDO associées à \(F_m \) :**

\[
\begin{align*}
\dot{u}^n_1 &= -V_g \cdot w_n \cdot v^n_1 - K_{des} u^n_1 \\
\dot{b}_1 &= -V_g \cdot a_1 - K_{des} b_1 \\
I \cdot \dot{a}_1 &= -\dot{b}_1 \left(\frac{h \text{col}}{2} \right) + \sum_{m=1}^{m=\text{mod}} \left[V_g \cdot u^n_1 - K_{des} \left(\frac{v^n_1}{w_m} - 2 \left(\frac{a_1}{w_m} \right) \right) \right] - V_g \left[a_1 \left(\frac{h \text{col}}{2} \right) + \sum_{m=1}^{m=\text{mod}} \frac{u^n_1}{w_m} \right] - \\
K_{des} \left[a_1 \left(\frac{h \text{col}^2}{12} \right) + b_1 \left(\frac{h \text{col}}{2} \right) - \sum_{m=1}^{m=\text{mod}} \frac{v^n_1}{w_m} \right] \\
\dot{v}^n_1 &= V_g \cdot w_n \cdot u^n_1 - K_{des} \left[v^n_1 - 2 \left(\frac{a_1}{w_n} \right) \right] + 2 \left(\frac{a_1}{w_n} \right)
\end{align*}
\]

- **EDO associées à \(F_e \) :**

\[
\begin{align*}
\dot{u}^n_2 &= -V_g \cdot w_n \cdot v^n_2 - (K_{des} + K_{rg}) \frac{u^n_2}{w_2} - \left(\frac{K_{dg}}{2} \right) N L^n_a \\
\dot{b}_2 &= -V_g \cdot a_2 - (K_{des} + K_{rg}) b_2 + \left(\frac{K_{dg}}{2} \right) N L_a \\
I \cdot \dot{a}_2 &= -\dot{b}_2 \left(\frac{h \text{col}}{2} \right) + \sum_{m=1}^{m=\text{mod}} \left[V_g \cdot u^n_2 - (K_{des} + K_{rg}) \left(\frac{v^n_2}{w_m} - 2 \left(\frac{a_2}{w_m} \right) \right) \right] + \left(\frac{K_{dg}}{2} \right) N L^n_a \\
\frac{a_2 \left(h \text{col}^2 \right)}{12} + \sum_{m=1}^{m=\text{mod}} \frac{u^n_2}{w_2} - (K_{des} + K_{rg}) \left[a_2 \left(\frac{h \text{col}}{12} \right) + b_2 \left(\frac{h \text{col}}{2} \right) - \sum_{m=1}^{m=\text{mod}} \frac{v^n_2}{w_m} \right] + \\
\left(\frac{K_{dg}}{2} \right) N L_a \\
\dot{v}^n_2 &= V_g \cdot w_n \cdot u^n_2 - (K_{des} + K_{rg}) \left(v^n_2 - 2 \left(\frac{a_2}{w_n} \right) \right) + \left(\frac{K_{dg}}{2} \right) N L^n_a + 2 \left(\frac{a_2}{w_n} \right)
\end{align*}
\]

- **EDO associées à \(C_p \) :**

267
\[\begin{align*}
\dot{u}_3^n &= -V_p \cdot w_n \cdot v_3^n - u_3^n[K_z(w_n)^2 + K_{\text{rp}}] + K_{\text{ad}} \cdot u_3^n + \left(\frac{K_{\text{des}}}{V_g} \right) u_2^n - \left(\frac{K_{\text{ag}}}{2V_g} \right) NL^n_u \\
\dot{b}_3 &= -V_p \cdot a_3 + K_{\text{ad}} \cdot b_4 - K_{\text{rp}} \cdot b_3 - \left(\frac{K_{\text{des}}}{V_g} \right) b_2 - \left(\frac{K_{\text{ag}}}{2V_g} \right) NL^n_b \\
I \cdot \dot{a}_3 &= -\dot{b}_3 \left(\frac{hcool}{2} \right) + \\
&\sum_{m=1}^{m=\text{mod}} \left[V_p \cdot \dot{u}_m^n - v_3^n(K_z w_m + \frac{K_{\text{rp}}}{w_m}) + K_{\text{ad}} \left(\frac{v_2^n}{w_m} \right) - 2 \left(\frac{a_3}{w_m^n} \right) \right] + \\
&\sum_{m=1}^{m=\text{mod}} \left[\left(\frac{K_{\text{des}}}{V_g} \right) \left(\frac{v_3^n}{w_m} \right) - 2 \left(\frac{a_2}{w_m^n} \right) - \left(\frac{K_{\text{ag}}}{2V_g} \right) (NL^n_m) \right] - \\
&V_p \left[a_3 \left(\frac{hcool}{2} \right) + \sum_{m=1}^{m=\text{mod}} \dot{u}_3^n \right] + \\
&K_z \sum_{m=1}^{m=\text{mod}} (v_3^n w_m) + K_{\text{ad}} \left[a_4 \left(\frac{hcool}{12} \right) + b_4 \left(\frac{hcool}{2} \right) - \sum_{m=1}^{m=\text{mod}} \left(\frac{v_3^n}{w_m} \right) \right] + \\
&K_{\text{rp}} \left[a_3 \left(\frac{hcool}{12} \right) + b_3 \left(\frac{hcool}{2} \right) - \sum_{m=1}^{m=\text{mod}} \left(\frac{v_3^n}{w_m} \right) \right] - \\
&\left(\frac{K_{\text{des}}}{V_g} \right) \left[a_2 \left(\frac{hcool}{12} \right) + b_2 \left(\frac{hcool}{2} \right) - \sum_{m=1}^{m=\text{mod}} \left(\frac{v_3^n}{w_m} \right) \right] - \left(\frac{K_{\text{ag}}}{2V_g} \right) NL^n_a \\
\dot{v}_3^n &= V_p \cdot w_n \cdot u_3^n - v_3^n[K_z(w_n)^2 + K_{\text{rp}}] + K_{\text{ad}}[v_3^n - 2(\frac{a_2}{w_n})] + \\
&2\cdot K_{\text{rp}}(\frac{a_2}{w_n}) + \left(\frac{K_{\text{des}}}{V_g} \right) v_2^n - 2\left(\frac{a_3}{w_n} \right) - \left(\frac{K_{\text{ag}}}{2V_g} \right) NL^n_v + 2\left(\frac{a_3}{w_n} \right)
\end{align*} \]

- EDO associées à Câle :

\[\begin{align*}
\dot{u}_4^n &= -u_4^n[K_z(w_n)^2 + K_{\text{ad}}] + K_{\text{rp}} \cdot u_4^n + \left(\frac{K_{\text{ag}}}{V_g} \right) u_2^n \\
\dot{b}_4 &= K_{\text{rp}} \cdot b_3 + \left(\frac{K_{\text{ag}}}{V_g} \right) b_2 - K_{\text{ad}} \cdot b_4 \\
I \cdot \dot{a}_4 &= -\dot{b}_4 \left(\frac{hcool}{2} \right) + \\
&\sum_{m=1}^{m=\text{mod}} \left[-v_4^n(K_z w_m + \frac{K_{\text{ad}}}{w_m}) + K_{\text{rp}} \left(\frac{v_2^n}{w_m} - 2 \left(\frac{a_3}{w_m^n} \right) \right) - \left(\frac{K_{\text{ag}}}{V_g} \right) \left(\frac{v_2^n}{w_m} - 2 \left(\frac{a_2}{w_m^n} \right) \right) + 2 \cdot K_{\text{ad}} \left(\frac{a_4}{w_m^2} \right) \right] + \\
&K_z \sum_{m=1}^{m=\text{mod}} (v_4^n w_m) + K_{\text{rp}} \left[a_3 \left(\frac{hcool}{12} \right) + b_3 \left(\frac{hcool}{2} \right) - \sum_{m=1}^{m=\text{mod}} \left(\frac{v_4^n}{w_m} \right) \right] + \\
&\left(\frac{K_{\text{ag}}}{V_g} \right) \left[a_2 \left(\frac{hcool}{12} \right) + b_2 \left(\frac{hcool}{2} \right) - \sum_{m=1}^{m=\text{mod}} \left(\frac{v_4^n}{w_m} \right) \right] - \\
&K_{\text{ad}} \left[a_3 \left(\frac{hcool}{12} \right) + b_3 \left(\frac{hcool}{2} \right) - \sum_{m=1}^{m=\text{mod}} \left(\frac{v_4^n}{w_m} \right) \right] - \\
&v_3^n - v_4^n[K_z(w_n)^2 + K_{\text{ad}}] + K_{\text{rp}}[v_4^n - 2(\frac{a_2}{w_n})] + \left(\frac{K_{\text{ag}}}{V_g} \right) [v_2^n - 2(\frac{a_3}{w_n})] + 2 \cdot K_{\text{ad}}(\frac{a_4}{w_n}) + 2(\frac{a_3}{w_n})
\end{align*} \]